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HYDRODYNAMIC CALCULATIONS OF LAYERED SEAMS

ON THE BASIS OF MODIFIED RELATIVE PERMEABILITIES

UDC 532.546S. P. Plokhotnikov and V. V. Eliseenkov

The possibility of reducing the dimensionality of the problem of two-phase filtration in layered seams
by introducing modified phase permeabilities instead of initial relative permeabilities, which are coeffi-
cients of the initial system of equations within the framework of the Barkley–Leverett model, is stud-
ied. Modified permeabilities are proposed for the case where the relative permeabilities of each phase
are represented by analytical dependences for individual interlayers. One-dimensional numerical cal-
culations with these permeabilities are in good agreement with the solution of the two-dimensional
problem.

We consider a two-dimensional (x, z) problem of two-phase displacement of oil by water in a layered nonuni-
form seam between two galleries with a given pressure difference. We assume that the fluids are incompressible,
capillary and gravitational forces are absent, and the flow is described by the Barkley–Leverett model. The math-
ematical formulation of this problem [1] with isothermal filtration has the following form:

div (KΣ gradP ) = 0, div (FKΣ gradP ) = m
∂S

∂t
,

KΣ = K(z)(Kw(S)/µw +Koil(S)/µoil), F = K(z)Kw(S)/(µwKΣ).

The initial and boundary conditions for the pressure P and water saturation S are P |x=0 = P1, P |x=L = P2,
S|x=0 = Smax = S∗, and S|t=0 = Smin = S∗; the adjoint conditions for the pressure and vertical fluxes of the phases
at the boundaries of interlayers composing the layered seam are P+ = P−, v+

w,z = v−w,z and v+
oil,z = v−oil,z; the

conditions of impermeability of the subface and roof of the seam are ∂P/∂z|z=0,oil = 0. Here K(z) is the absolute
permeability of the seam consisting of hydrodynamically related, horizontally uniform interlayers with different
absolute permeabilities [the dependence K(z) obeys the probability distribution law with a density f(k)]; Kw(S)
and Koil(S) are the relative permeabilities of water and oil, respectively, which are determined by core samples; µw

and µoil are the viscosities of the corresponding phases, H is the power (thickness) of the seam; L is the distance
between the outlet and exploitation galleries, m is the porosity, and S∗ is the water saturation in the outlet gallery.

The problem was solved numerically using a finite-difference scheme (alternatively triangular method [2]).
The calculations were performed for a seam consisting of five uniform interlayers of identical thickness. The func-
tion K(z) was specified as follows: uniform distribution over the seam thickness, exponential distribution, and
Maxwellian distribution.

We consider the oil recovery factor η as a function of the time of seam exploitation t or pumped porous
volumes τ (Fig. 1). Since the interlayers in the initial seam may be located in different order along the vertical,
the dependence η(τ) yields a set of curves significantly different from each other. Figure 1 shows the limiting
values of this set. Curve 2 refers to a seam in which the neighboring interlayers possess the greatest and the least
values of absolute permeability. Powerful vertical overflow arises between the interlayers, which ensures a greater
degree of oil displacement by water. Curve 3 corresponds to a seam with isolated interlayers (interlayer boundaries
are impermeable). In this case, there is no overflow, and the least displacement of oil by water is observed. The
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Fig. 1. Oil recovery factor η as a function of τ [uniform distri-
bution K(z) over the interlayers; Kw(S) and Koil(S) are linear
functions]: curve 1 refers to the solution C, curves 2 and 3 show
the upper and lower boundaries of the reference solutions Ai,
respectively, curve 4 refers to the solution B.

calculations were performed for the following values of the absolute permeability of interlayers: K1 = 0.1 darcy,
K2 = 0.3 darcy, K3 = 0.5 darcy, K4 = 0.7 darcy, and K5 = 0.9 darcy. Here K(z) is a piecewise-continuous function;
the coefficient of variation of layered inhomogeneity over the seam thickness V = 0.55 is close to the maximum
value for the prescribed uniform distribution.

The relative permeabilities were written in the form

Kw(S) = Kw0(Sm(S)), Koil(S) = Koil0(1− Sm(S)), Sm(S) = (S − S∗)/(S∗ − S∗), (1)

where Sm is the “movable” water. The numerical solution of the two-dimensional (x, z) problem obtained with the
use of phase permeabilities (1) and the above-mentioned absolute permeabilities Kj (j = 1, 5) of the interlayers is
assumed to be the reference solution and is designated as Ai. Curves 2 and 3 in Fig. 1 limit the set of the reference
solutions Ai from above and from below.

It follows from the numerical results that similar positions of these curves are observed for other distribution
laws of K(z), i.e., for each distribution law, there is a corresponding set of reference solutions Ai.

We reduce the dimensionality of the initial two-dimensional two-phase problem. Instead of it, we solve a one-
dimensional problem within the framework of the Barkley–Leverett model. The absolute permeability is assumed

to be equal to its mean value over the seam thickness K∗ =
1
H

H∫
0

K(z) dz, and the relative permeabilities are

determined using the same dependences (1) as in the two-dimensional problem. The resultant numerical solution
is called the solution C. The calculation results are plotted in Fig. 1 (curve 1).

The relative permeabilities in the one-dimensional problem are further used in the form

K ′w(S) = Kw(S)A(S), K ′oil(S) = Koil(S)B(S), (2)

where A(S) and B(S) are correction coefficients, which will be found using the method described below. The
numerical solution of this one-dimensional problem will be called the solution B (curve 4 in Fig. 1).

We consider a two-dimensional two-phase flow in a layered seam. The initial relative permeabilities are
defined in the form of (1). Since the motion of the maximum water saturation S∗ from the outlet gallery to the
exploitation gallery occurs in the numerical solution of the two-phase filtration problem only in the case of linear
dependences Kw(S) and Koil(S) [6], we may speak of complete displacement of movable oil in the most permeable
interlayers, where the function S(x, z) reached the value S∗, i.e., of strong “cusping” [3]. Based on this fact, we
assume that the flow has a jetlike character [4, 5] and consider a jet flow in a layered seam instead of two-dimensional
two-phase filtration. It is assumed that the seam consists of many isolated interlayers whose properties are constant
along the horizontal direction and variable along the vertical one. Water displaces oil in interlayers and moves in
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jets of various lengths. The motion is faster in interlayers with a greater permeability. Therefore, the interlayers in
each vertical section may be united into two zones: the zone of water of thickness Hw, where S(x, z) = S∗, and the
zone of oil of thickness Hoil, where S(x, z) = S∗. It follows from these assumptions that, in each vertical section of
the seam, one can find an absolute permeability K̄ such that the following relation is valid: H = Hw + Hoil; here

Hw =
n1∑
i=1

Hi for Ki > K̄ and Hoil =
n2∑
j=1

Hj for Kj 6 K̄ (Ki, Kj , Hi, and Hj are the absolute permeabilities and

thicknesses of the interlayers; n1 and n2 are the numbers of interlayers in the seam).
We consider a part of volume of seam pores ∆Vw of thickness Hw and length ∆x, which are filled by water at

the time t [S(x, z) = S∗]. We also consider the total volume of pores ∆V of thickness H and length ∆x. Obviously,
we have ∆V = H∆xm and ∆Vw = Hw∆xmS∗ + (H −Hw)∆xmS∗. We find the water saturation at each point x:
S̃(x) = lim

∆x→0
(∆Vw/∆V ) [6]. Obviously, this value is equal to the mean water saturation over the seam thickness in

a jet flow: S̃(x) =
1
H

H∫
0

S(x, z) dz.

Taking into account the above reasoning, we can consider a jet flow in a layered seam as a one-dimensional
two-phase flow with a mean value K∗ and water saturation S(x) close to S̃(x). To write the continuity equations
for one-dimensional two-phase filtration, in this case, it is necessary to assume that there is a rather large number
of different interlayers in the layered seam so that Hw and S̃(x) are continuous functions, which is what we do since
we consider a continuous distribution K(z). In these one-dimensional continuity equations, we use averaged values
of water and oil permeabilities under the assumption of the jetlike character of the flow in interlayers [4, 5] and
validity of the relation H = Hw + Hoil. With regard for this fact, the continuity equations include the absolute
permeability K∗ and the modified phase permeabilities (2), which have the form

K ′w(S) = Kw0(Sm(S))K̄w(S)/K∗, K ′oil(S) = Koil0(1− Sm(S))K̄oil(S)/K∗. (3)

The mean permeabilities K̄w(S) and K̄oil(S) are obtained using the function f(k), which is the probability density
of the distribution K(z) [a 6 K(z) 6 b]:

K̄w(S) =

b∫
K̄

kf(k) dk

/ b∫
K̄

f(k) dk, K̄oil(S) =

K̄∫
a

kf(k) dk

/ K̄∫
a

f(k) dk. (4)

The value of K̄ is found from the given water saturation S(x) by the solving numerically the equation

1− Sm(S) =

K̄∫
a

f(k) dk. (5)

For the initial linear permeabilities Kw(S) and Koil(S) [see (1)], the coefficients A(S) and B(S) are written in the
form

A(S) = K̄w(S)/K∗, B(S) = K̄oil(S)/K∗. (6)

For an arbitrary distribution of the function K(z), the modified permeabilities K ′w(S) and K ′oil(S) are found
numerically by formulas (3)–(6). In the case of a uniform distribution of the function K(z) over the thickness, we
can easily obtain the analytical dependences

K ′w(S) = Kw0Sm(S)[1 + V
√

3(1− Sm(S))], K ′oil(S) = Koil0(1− Sm(S))[1 + V
√

3(1− Sm(S))], (7)

where V is the coefficient of variation of layered nonuniformity.
The calculations of the one-dimensional problem of two-phase filtration by formulas (7) are plotted in Fig. 1.

Curves 4 and 1 are the lower and upper boundaries of these solutions, respectively. Thus, the reference solutions Ai
are within the range of the one-dimensional solutions B and C.

It follows from Eqs. (3)–(7) that the modified permeabilities are obtained from the linear relative perme-
abilities (1) by multiplication by the coefficients A(S) and B(S). In considering a layered seam in which the values
of K(z) remain almost unchanged (i.e., the seam is extremely uniform), we have A(S) = B(S) = 1. The latter
equality is obvious, since the permeability of the water zone in such a seam is equal to the permeability of the oil
zone and to the mean permeability of the seam itself. In this case, we have K ′w(S) = Kw(S) and K ′oil(S) = Koil(S),
which corresponds to the limiting case (uniform seam).
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Fig. 2 Fig. 3

Fig. 2. Dependences Koil(S), K′oil(S), Kw(S), and K′w(S) [uniform distribution K(z) over the interlayers;
Kw(S) and Koil(S) are cubic functions].

Fig. 3. Dependence η(τ) [uniform distribution K(z) over the interlayers; Kw(S) and Koil(S) are cubic
functions] (notation the same as in Fig. 1).

Nevertheless, laboratory studies show that Kw(S) and Koil(S) are most often nonlinear functions. Sometimes
they are assumed to be quadratic or cubic parabolas

Kw(S) = Kw0(Sm(S))α, Koil(S) = Koil0(1− Sm(S))β (α = 2, 3; β = 2, 3). (8)

In this case, the assumption about the jetlike character of the flow in the layered seam is impossible, since, in
the case of nonlinear dependences Kw(S) and Koil(S), there is no motion of the section of the maximum water
saturation S∗ [6] and complete displacement in each interlayer of the seam. Therefore, the modified permeabilities (3)
cannot be obtained by averaging.

We solve a one-dimensional problem with modified permeabilities of the form (2), which are obtained by
correction of the initial nonlinear dependences Kw(S) and Koil(S) (8) with the help of the coefficients A(S) and
B(S). In the case A(S) = B(S) = 1, we have a one-dimensional solution C (see Fig. 1). If these coefficients are
taken in the same form as for the linear case [see (4)–(6)], we obtain a one-dimensional solution B (see Fig. 1).
Figure 2 shows the dependences Kw(S), Koil(S), K ′w(S), and K ′oil(S) (3) in the case α = β = 3 for a uniform
distribution K(z) over the interlayers. The location of the curves in Fig. 2 is the same as in the case of linear
dependences Kw(S) and Koil(S) [4].

Figure 3 shows the dependences η(τ) for α = β = 3. As in the linear case (see Fig. 1), the reference
solutions Ai lie within the range of one-dimensional solutions B and C. In addition, in the above-considered case of
nonlinear dependences Kw(S) and Koil(S), the modified permeabilities (2) coincide with the initial permeabilities
in passing to the limiting uniform seam, since A(S) = B(S) = 1. For the problem considered, the correction
coefficients were first proposed in [7]. Thus, the correction coefficients for the jet flow are also applicable in the
nonlinear case.

We consider a more general case of setting the dependences Kw(S) and Koil(S) in a layered seam. It is known
that the relative permeabilities Kw(S) and Koil(S) for different interlayers are often described by different analytical
dependences. It is rather difficult to construct the common dependences K ′w(S) and K ′oil(S) for the whole seam.
We consider the case of permeabilities set in the form Kw(S) = Kw0(Sm(S))αi and Koil(S) = Koil0(1 − Sm(S))βi ,
where αi and βi are constants depending on the number i of the interlayer (αi, βi > 1). By analogy with the
previous one-dimensional solutions C, we use the values of permeabilities averaged over the seam thickness:

〈Kw(S)〉 =
1
H

n∑
i=1

HiKw(S), 〈Koil(S)〉 =
1
H

n∑
i=1

HiKoil(S). (9)
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Fig. 4 Fig. 5

Fig. 4. Mean permeabilities 〈Kw〉 and 〈Koil〉 calculated by (9) and modified permeabilities K̄′w and K̄′oil

calculated by (10).

Fig. 5. Permeabilities Kw and Koil obtained using core samples and modified permeabilities K̄′w and K̄′oil

calculated by (10).

Fig. 6. Distribution of the oil recovery factor versus the time
of seam exploitation [uniform distribution K(z) over the inter-
layers; Kw(S) and Koil(S) are nonlinear functions; V = 0.55]:
curve 1 refers to the solution C, curve 2 shows the reference
solution A, curve 3 refers to the solution B.

In addition, another, more complicated approach is used:

K̄ ′w(S) = 〈Kw(S)〉A(S), K̄ ′oil(S) = 〈Koil(S)〉B(S). (10)

The dependences K̄ ′w(S) and K̄ ′oil(S) are obtained by correction of permeabilities averaged over the thickness with
the help of the coefficients A(S) and B(S) (4)–(6). These coefficients are obtained for the initial layered seam
under the assumption of the jetlike character of displacement for a particular case of linear dependences Kw(S) and
Koil(S), which are identical for the entire layered seam.

As an example, we again consider a seam consisting of five interlayers of identical thickness but with different
permeabilities: Kw(S) = Kw0(Sm(S))2 for i = 1, 2, 4, and 5, Kw(S) = Kw0(Sm(S))1.5 for i = 3, Koil(S) =
Koil0(1− Sm(S))2 for i = 1, 2, 4, and 5, and Koil(S) = Koil0(1− Sm(S)) for i = 3.

The mean permeabilities (9) constructed for this seam are shown in Fig. 4, and the modified mean (10) and
experimental permeabilities are plotted in Fig. 5. Figure 6 shows the dependence of the oil recovery factor versus
the time of seam exploitation in the case of one-dimensional displacement [by Eqs. (9) and (10)] and also in the
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case of a two-dimensional profile flow (reference solutions Ai). The results obtained are similar to those shown in
Figs. 1 and 3. The reference solutions Ai are located between two one-dimensional solutions B and C.

Numerical calculations with different combinations of the functions Kw(S) and Koil(S) for interlayers of the
initial layered seam with a uniform distribution over the thickness and also with different distributions showed that
expressions for the modified permeabilities (2) based on results obtained for a jet flow may be used in calculations.
This allows one to used the calculation results of the simplest (jetlike) displacement to analyze more complicated
cases of displacement of oil by water in layered seams.

REFERENCES

1. I. A. Chekalin, Numerical Solutions of Problems of Filtration in Water–Oil Seams [in Russian], Izd. Kazan.
Univ., Kazan’ (1982).

2. A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1977).
3. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Motion of Liquids and Gases in Natural Seams [in Russian],

Nedra, Moscow (1984).
4. V. Ya. Bulygin, “Motion of two-liquid systems in nonuniform seams,” in: Theoretical and Experimental Issues

of Rational Exploitation of Oil Pools [in Russian], Izd. Kazan. Univ., Kazan’ (1969), pp. 76–85.
5. C. L. Hearn, “Simulation of stratified water-flooding by pseudo relative curves,” J. Petrol. Technol., No. 7,

805–813 (1971).
6. I. A. Charnyi, Underground Hydrogasdynamics [in Russian], Gostoptekhizdat, Moscow (1963).
7. S. P. Plokhotnikov, V. V. Skvortsov, and L. A. Plokhotnikova, “Method of modified permeability to phase

construction,” in: Flow through Porous Media: Fundamentals and Reservoir Engineering Applications, Proc. of
the Int. Conf. (Moscow, Sept. 21–26, 1992), Inst. of Problems of Mech., Moscow (1992), pp. 107–108.

838


